
Solutions to Exercises

Guillaume Rabault

This post collects the solutions to the exercises of the ENSAE course.

Mean-Variance
Exercise 1.1

• If you find the following difficult, solve the problem in the context of a
single risky asset.

1.

• I = {1, 2, . . . , N} (no riskless asset).

• πππ = (πi)′i∈I
max
πππ

E[− exp(−αw̃)]

s.t. :

w̃ = w0
∑
i∈I

πiR̃i

∑
i∈I

πi = 1,

with α > 0.

• We have: E[− exp(−αw̃)] = − exp(−αE[w̃] + (α2/2)V [w̃]). We can thus
maximize E[w̃]− (α/2)V [w̃].

• This function is decreasing in wealth when wealth is large. The investor
therefore does not benefit of being wealthier beyond a certain point.

• The criterion can be written:

w0πππ
′µµµ− (α/2)w2

0πππ
′Σπππ,

where µµµ is the expected return vector and Σ is the covariance matrix.

• Assuming as usual that Σ is positive definite and the criterion is strictly
concave.
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• In the absence of a budget constraint, we can choose w0 = 1 and leave the
vector of weights unconstrained. The first order condition characterizes
the solution. It is:

µµµ = αΣπππ,

πππ = 1
α

Σ−1µµµ.

• The total wealth needed to reach the optimum is:

eee′πππ = 1
α
eee′Σ−1µµµ.

Any additional wealth is useless.

2.

• We now start from an initial wealth level w0 > 0 and impose that the
vector of weights sum to 1.

max
πππ

πππ′µµµ− (α/2)w0πππ
′Σπππ

s.t. :

eee′πππ = 1.

• The lagrangian can be written:

πππ′µµµ− (α/2)w0πππ
′Σπππ − λ(πππ′eee− 1),

and the first order condition:

µµµ− αw0Σπππ − λeee = 0,

• The langrangian multiplier is given by (multiply the first order condition
on the right by πππ′):

λ = πππ′µµµ− αw0πππ
′Σπππ.

• The solution splits as follows:

w0πππ = 1
α

Σ−1µµµ− λ

α
Σ−1eee.

The first term corresponds to the optimal unconstrained solution of question
1. The second term ensures that what the whole wealth is invested.

3.

• We have:
w0 = 1

α
eee′Σ−1µµµ− λ

α
eee′Σ−1eee.
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• For λ > 0, w0 is below the optimal wealth level of question 1. For λ < 0, w0
is above the optimal wealth level of question 1. Since the budget constraint
prevents from throwing money away, too much is invested when λ < 0.

• We know that the utility outcome is measured by:

w0πππ
′µµµ− (α/2)w2

0πππ
′Σπππ.

An infinitesimal increase in wealth has an inmpact on utility measured
through (using the envelope theorem - one can neglect the infinitesimal
change in the optimal portfolio as we change wealth infinitesimally - differ-
entiate with respect to w0):

πππ′µµµ− αw0πππ
′Σπππ,

which is just λ. Therefore when λ < 0 indeed, the marginal utility of
wealth is negative. This is due to the fact that the utility function decreases
beyond a certain level of wealth.

4.

• In the presence of cash, we know that we can parameterize the optimization
problem using the risky asset weights. The optimization is unconstrained
and the cash position is deduced from the budget constraint. The risky
asset weight solves the problem of question 1 with µ − rf in place of µ.
The residual amount of wealth (positive if wealth is high, negative if wealth
is low) is invested in the riskless asset. The level of investment in the risky
assets is always optimal (i.e. as in question 1 up to the substitution of
µ− rf for µ).

Exercise 1.2

• See the notebook, which directly applies the formulas in the section on
static optimization.

3.

• The tangent portfolio is:

π∗π∗π∗ = 1
eee′Σ−1(µµµ− rfeee)Σ−1(µµµ− rfeee),

while the solution for the given utility function is:

πρπρπρ = 1
ρ

Σ−1(µµµ− rfeee).

Thus the value of ρ that delivers the tangent portfolio is just:

ρ∗ = eee′Σ−1(µµµ− rfeee).

5.
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• The risky asset portfolios along the efficient frontier are all proportional to
the tangent portfolio. The proportions across risky assets are thus constant
along the efficient frontier. As we move towards more volatile portfolios,
efficient portfolios borrow cash to finance positions in risky assets. If
borrowing is ruled out, the risky asset positions need to change. The
efficient frontier cannot be linear beyond the point where cash borrowing
kicks in. Positions in the most volatile risky asset (equities in our case)
needs to be financed through lower positions on the least volatile risky
asset (in our case bonds). The proportion of bonds to equities falls as we
increase volatility.

• The no borrowing constraint does not impact safe portfolios.

6.

• The efficient proportion of bonds to equities is at least four to one. This
holds if bonds are quite attractive relatively to equities. You can play with
the program to find specific parameters that match this situation.

Exercise 1.4

1.

• The first order condition is:

πρπρπρ = 1
ρ

Σ−1(µµµ− rfeee),

which can also be written:

Σπρπρπρ = 1
ρ

(µµµ− rfeee).

We therefore have:
πρπρπρ
′Σπρπρπρ = 1

ρ
πρπρπρ
′(µµµ− rfeee).

σρ = 1
ρ

πρπρπρ
′(µµµ− rfeee)
σρ

= 1
ρ
λρ.

with σρ being the volatility of the optimal portfolio and λρ its sharpe ratio.

• We remind that λρ is independent of ρ. It is given by the Sharpe ratio of
the tangent portfolio.

2.

• We have:
µρ = λσρ = ρσ2

ρ.

In the (σ, µ) space, the locus of optimal portfolios attached to a given ρ,
as we vary the Sharpe ratio λ, is a parabola.
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Dynamics, discrete time
Exercise 2.1

1.

• Directly from the course:

max
πππ[t,T−1]

Et

[
w1−ρ
T

1− ρ

]

s.t.

wk+1 = wkπ
′
kRk+1, π

′
ke = 1, k = t, . . . , T − 1.

2.

max
π

ET−1

[
w1−ρ
T−1(π′RT )1−ρ

1− ρ

]
,

s.t.

π′e = 1.

• The constraint is linear and the criterion is concave (being a composition of
a concave function with a linear one). We are thus in the usual Khün-Tucker
context. Through the Lagrangian:

L = w1−ρ
T−1ET−1

[
(π′RT )1−ρ

1− ρ

]
− λπ′e,

we get the first order condition (differentiating with respect to π):

w1−ρ
T−1E[(π′RT )−ρRT ] = λe.

• Being in the standard concave case, the first order condition is both
necessary and sufficient.

3.

• Consider two levels of initial wealth in date T − 1, w0 and w1. Suppose
the the policy π0 is optimal for wealth level w0 leading to utility level
V (w0). Then applying the policy for wealth level w1 leads to utility level
(w1/w0)1−ρV (w0). We thus have V (w1) ≥ (w1/w0)1−ρV (w0). Inverting
the role of w0 and w1 leads to V (w0) ≥ (w0/w1)1−ρV (w1). Combining
the two inequalities proves the homogeneity of the value function, which
can choose to write w1−ρV (1). We can thus write:

VT−1(wT−1) = w1−ρ
T−1VT−1(1).
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• The constant of proportionality is the value attached to:

max
π

ET−1

[
(π′RT )1−ρ

1− ρ

]
,

s.t.

π′e = 1.

• In other words:
VT−1(1) = E

[
(π′∗R)1−ρ

1− ρ

]
,

which is negative and is a constant.

4.

• At step t, the optimization program is, by recurrence:

max
π

Et

[
w1−ρ
t (π′Rt+1)1−ρVt+1(1)

]
,

s.t.

π′e = 1.

• We then proceed as in the previous question. The program has the same
characteristics (concave negative criterion, linear constraint). The value
function is homogenous and we can write it as w1−ρVt(1). Because Vt+1(1)
is a negative constant, the optimization problem actually leads to the same
optimal portfolio π∗. We then have the recurrence relation:

Vt(1) = Vt+1(1)E
[
(π′∗R)1−ρ] .

• The terminal condition implies VT (1) = 1/(1− ρ).

5.

• We established that the optimal portfolio is the same at each date. That is
the main take-away. In this setup, the investor’s choice does not depend on
the investment horizon. He rebalanced to the same set of optimal weights
at each step.

Exercise 2.3

1.

• Because the support of R̃1 has 0 as its lower bound, wealth invested in the
risky asset in period 0 can can lead to nothing in period 1. The minimum
amount of wealth needed to obtain w1 in period is:

w0 = w1
Rf

.
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2.

• According to question 1, at least w0 should be invested in the riskless asset.
Thus nothing more than w0 − w0 can be invested in the risky asset. This
quantity (the surplus) can be split into the fraction invested in the risky
asset and the remaining fraction invested in the riskless asset. Thus the
transfer of wealth obeys:

w1 = w0R
f + (w0 − w0)(1− π0)Rf + (w0 − w0)π0R̃1,

or given that w0R
f = w1:

w1 − w1 = (w0 − w0)(Rf + π0(R̃1 −Rf )).

• To see that π0 should be positive or zero, note that because the return R̃1
can be arbitrarily large, going short the risky asset can wipe out any level
of wealth.

3.

• We have:

– the budget constraint expressed as a function of the surplus is ge-
ometric. Multiplying the initial surplus w0 − w0 by λ leaving the
proportion π0 unchanged leads to λ times w1−w1 as the final surplus:

λ(w1 − w1) = λ(w0 − w0)(Rf + π0(R̃1 −Rf )).

– the set of feasible investment policies does not depend on the initial
surplus.

– for a given investment policy π0, if U(w0 − w0, π0) is the utility level
reached starting from a surplus w0 − w0, the utility level reached
starting from λ(w0−w0) is U(λ(w0−w0), π0) = λ1−ρU(w0−w0, π0).

• These facts imply that the value function V (w0 − w0) is homogenous of
degree 1− ρ in the surplus. Indeed, if V (λ(w0 − w0)) > λ1−ρV (w0 − w0),
then using the optimal choice for the initial condition λ(w0 −w0), one can
achieve the value:

1
λ1−ρV (λ(w0 − w0)) > V (w0 − w0),

for the utility level reached from the initial conditon w0 − w0. This is a
contradiction. Similarly:

V (λ(w0 − w0)) < λ1−ρV (w0 − w0),

would lead to a contradiction.
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• The optimal program for the initial condition w0 − w0 = 1 is:

V (1) = max
π0

E[ 1
1− ρ (Rf + π0(R̃1 −Rf ))1−ρ]

s.t. :

0 ≤ π0 ≤ 1,

and the solution does not depend on the initial condition.

4.

• We know from the previous questions that in the two period case, the
value function in date 0 reads:

VT−1(1)(w0 − w0)1−ρ.

Note that VT−1(1) has the same sign as 1− ρ.

• We can extend the reasoning by recurrence using the dynamic programming
principle, and we therefore obtain that the value function at any date t
reads:

Vt(1)(w0 − w0)1−ρ.

The optimal command is given by:

max
πt

E[Vt+1(1)(Rf + π0(R̃1 −Rf ))1−ρ]

s.t. :

0 ≤ πt ≤ 1.

This gives the same result for every date t (we have i.i.d. risky asset returns
and a constant cash rate).

Dynamics, continuous time
Exercise 3.1

1.

• For t ∈ (ti, ti+1] and t′ ∈ (tk, tk+1] (I assume k > i + 1, the case where
k = i+ 1 follows similar lines):

Mt′ =
∫ t′

0
h(u)dBu =

i−1∑
j=1

Fj(Btj −Btj+1) + Fti(Bt −Bti)+

Fti(Bti+1 −Bt) +
k−1∑
j=i+1

Fj(Btj −Btj+1) + Ftk (Bt′ −Btk ).
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• Using the properties of the Brownian motion, we have:

Et[Mt′ ] = Et[
i−1∑
j=1

Fj(Btj −Btj+1) + Fti(Bt −Bti)] = Mt.

This says that the stochastic integral of a simple process is a martingale.

2.

• For the left hand side, one just needs to develop M2
t and use the fact that:

E0[Ftk (Btk+1 −Btk )Ftj (Btj+1 −Btj )] = 0,

when intervals [tk, tk+1] and [tj , tj+1] don’t overlap while:

E0[F 2
tk

(Btk+1 −Btk )2] = E0[F 2
tk

(tk+1 − tk)].

• For the right-hand side:

h(t) =
n∑
i=1

F 2
i 1(ti,ti+1],

so that: ∫ t

0
h(u)2du =

i−1∑
j=1

F 2
j (tj+1 − tj) + F 2

ti(t− ti).

• Identification is then immediate.

3.

• We have (t′ ≥ t):∫ t′

0
h(u)dBu =

∫ t

0
h(u)dBu +

∫ t′

t

h(u)dBu,

and:

Et[|
∫ t′

0
h(u)dBu|2] = |

∫ t

0
h(u)dBu|2 + Et[|

∫ t′

t

h(u)dBu|2],

as the expectation of the cross-product vanishes.

• Similarly: ∫ t′

0
h(u)2du =

∫ t

0
h(u)2du+

∫ t′

t

h(u)2du,

and:

Et[
∫ t′

0
h(u)2du] =

∫ t

0
h(u)2du+ Et[

∫ t′

t

h(u)2du].

9



• Then we can proceed as in 2 to get:

Et[|
∫ t′

t

h(u)dBu|2]− Et[
∫ t′

t

h(u)2du] = 0,

so that:

Et[|
∫ t′

0
h(u)dBu|2]− Et[

∫ t′

0
h(u)2du] = |

∫ t

0
h(u)dBu|2 −

∫ t

0
h(u)2du,

which is what we needed to establish.

4.

• Because E0[Mt] = 0, the variance of Mt (as seen from date 0) is E0[M2
t ]

which is equal to E0[[M ]t], i.e. the expectation of the quadratic variation.
When quadratic variation is deterministic, it is equal to the variance (as
seen from date 0) of Mt.

Exercise 3.2

1.

• We just need to apply Ito to exp
(
−
∫ t

0 rudu
)
PTt . The exponential is a

finite variation process and the Ito boils down to the standard differential
formula in this case:

d

(
exp

(
−
∫ t

0
rudu

)
PTt

)
= d

(
exp

(
−
∫ t

0
rudu

))
PTt +exp

(
−
∫ t

0
rudu

)
d(PTt ),

= − exp
(
−
∫ t

0
rudu

)
PTt rtdt+exp

(
−
∫ t

0
rudu

)
PTt rtdt+exp

(
−
∫ t

0
rudu

)
PTt σ

T
t dBt.

= exp
(
−
∫ t

0
rudu

)
PTt σ

T
t dBt.

• Thus exp
(
−
∫ t

0 rudu
)
PTt is a martingale.

2.

• We therefore have:

exp
(
−
∫ t

0
rudu

)
PTt = Et

[
exp

(
−
∫ T

0
rudu

)
PTT

]

= Et

[
exp

(
−
∫ T

0
rudu

)]
.

Therefore:

PTt = Et

[
exp

(
−
∫ T

t

rudu

)]
.
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3.

• Differentiate exp(ρt)rt:

d (exp(ρt)(rt − r̄)) = ρ exp(ρt)(rt−r̄)dt−ρ exp(ρt)(rt−r̄)dt+exp(ρt)σrdBt.

= exp(ρt)σrdBt.

Therefore:

exp(ρt)(rt − r̄)− (r0 − r̄) =
∫ t

0
exp(ρu)σrdBu,

rt − r̄ = exp(−ρt)(r0 − r̄) +
∫ t

0
exp(−ρ(t− u))σrdBu.

4.

• One needs to integrate the above equation written between t and u >
t instead on 0 and t. Integrating the term exp(−ρt)(r0 − r̄) leads to:
(rt − r̄)b(T − t) where:

b(T−t) =
∫ T

t

exp(−ρ(u−t))du = −1
ρ

[exp(−ρ(u−t))]u=T
u=t = 1− exp(−ρ(T − t))

ρ
.

• One then applies Fubini to the following double integral:∫ T

t

(∫ u

t

exp(−ρ(u− v))σrdBv
)
du =

∫ T

t

(∫ T

v

exp(−ρ(u− v))du
)
σrdBv,

and observes that: ∫ T

v

exp(−ρ(u− v))du = b(T − v).

This gives the result.

5.

• Write:

b(h−u) = 1
ρ2−

1
ρ2 exp(−ρ(h−u))− 1

ρ
exp(−ρ(h−u))1

ρ
(1−exp(−ρ(h−u))),

and observe that:

−1
ρ

exp(−ρ(h− u))1
ρ

(1− exp(−ρ(h− u))) = 1
ρ
b′u(h− u)b(h− u),

where b′u(h− u) is the u derivative of b(h− u). The formula then follows
by straitghtforward integration.

6.
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• The variable
∫ T
t
rudu is Gaussian with mean r̄(T − t) + (rt − r̄)b(T − t)

and variance: ∫ T

t

b(T − u)2σ2
rdu.

Thus:

PTt = exp
(
−r̄(T − t)− (rt − r̄)b(T − t) + σ2

r

2

(∫ T

t

b(T − u)2du

))
.

7.

• Applying Ito to the above formula shows that the volatility of the price
process is σrb(T − t).

Exercise 3.3

1.

• Inserting dBt = dBQt − λdt into:

dPTt
PTt

= (rt + σTt λ)dt+ σTt dBt,

we get:
dPTt
PTt

= rtdt+ σTt dB
Q
t .

2.

• The SDE followed by the cash rate is:

drt = −ρ(rt − r̄ + λ

ρ
)dt+ σrdB

Q
t ,

i.e.:
drt = −ρ(rt − r̃)dt+ σrdB

Q
t ,

with:
r̃ = r̄ − λσr

ρ
.

Therefore, the mean cash rate has changed.

3.

• We now have:

PTt = EQt

[
exp

(
−
∫ T

t

rudu

)]
.

• The process (BQt ) is a Brownian motion. We can thus compute the price
as in the previous exercise. This gives:

PTt = exp
(
−r̃(T − t)− (rt − r̃)b(T − t) + σ2

r

2

(∫ T

t

b(T − u)2du

))
.
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4.

• Only the mean short rate has changed. Price volatility is unchanged.

Links
• Link to pdf
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