
Static Portfolio Choice

Guillaume Rabault

In this section of the course, I review the static portfolio choice problem. The
investor chooses a portfolio structure which is then left alone. The investment
criterion is the expected utility of wealth at a terminal date. I briefly review
specifications for the utility function together with risk aversion concepts. I
look at the case of constant absolute risk aversion and normal returns, with
or without labour income. I then introduce mean variance preferences, linking
them to expected utility. Mean variance with and without a risk free asset is
studied. The link between mean variance preferences and the expected returns/beta
relationship is explained (the key ingredient of the CAPM). I then touch on the
implementation problem.

Timing
• Two periods:

– portfolio decisions in t=0

– outcome observed in t=1

• Outcomes in date 1 are uncertain as of date 0; they are described by
random variables which we will identify in the notation using tildas

– x: particular outcome; x̃: random variable

Instruments
• Instrument i with price pi in period 0 gives right to pay-off x̃i in period 1

• A cash instrument is an instrument with known date 1 pay-off as of date 0

• For risky assets, x̃ is uncertain as of date 0

• I’ll assume there are N risky assets (i = 1, · · · , N) and potentially cash
(the riskless asset), which will then have index 0

• The set of assets will be denoted by I, with either I = (1, · · · , N) (no
riskless asset) or I = (0, · · · , N) (with a riskless asset)
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Returns
• The return of an instrument with price p and pay-off x̃ is:

R̃ = x̃

p

• The rate of return is r̃ = R̃− 1

• The rate of return of cash is usually denoted rf ; it is known as of date 0

Investment and returns
• From investment to pay-off

• From t = 0 to t = 1:

– φ −→ R̃φ
– φ −→ (1 + r̃)φ

Portfolios
• Wealth in period 0 is w0

• The portfolio is invested in period 0; quantities (θi)i∈I are purchased

• They need to satisfy: ∑
i∈I

θipi = w0

• One can choose as control variables:

– quantities (θi)i∈I
– dollar amounts invested on instruments (φi)i∈I with φi = θipi

– wealth shares (πi)i∈I , with πi = φi/w0

Budget constraints
• Quantities: ∑

i∈I
θipi = w0

• Dollar amounts: ∑
i∈I

φi = w0

• Wealth shares: ∑
i∈I

πi = 1
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Borrowing
• Borrowing is best understood as a negative position in cash:

– from t = 0 to t = 1

– φ = −d −→ −d(1 + rf )

Accounting for future wealth
• for a given initial wealth w0, a portfolio allocation leads to a random final

wealth w̃ with:

– quantities: w̃ =
∑
i∈I θix̃i

– invested amounts: w̃ =
∑
i∈I φiR̃i

– wealth shares: w̃ = w0
∑
i∈I πiR̃i

– It is sometimes useful to introduce at date 1 an exogenous income
(amount to be received) or liability (amount to be paid) ỹ

– w̃ = ỹ +
∑
i∈I θix̃i

– w̃ = ỹ +
∑
i∈I φiR̃i

– w̃ = ỹ + w0
∑
i∈I πiR̃i

Some return arithmetic
• Without liability, we have:

– portfolio return:
R̃p = w̃

w0
=
∑
i∈I

πiR̃i

– portfolio rate of return:

r̃p = w̃

w0
=
∑
i∈I

πir̃i

(since
∑
i∈I πi = 1)

The space of excess returns
• In the presence of a riskless asset, it is convenient to introduce excess

returns versus the riskless rate:

r̃p =
∑
i∈I

πir̃i

= rf +
N∑
i=1

πi(r̃i − rf ).
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• The choice variables are initially (πi)i∈I , under the constraint
∑
i∈I πi = 1.

• In the excess return space, the choice variables are (πi)Ni=1 to which no
budget constraint applies since it is enforced by π0 = 1−

∑N
i=1 πi.

The portfolio problem
• Future wealth is a random variable, with a specific distribution

• The portfolio problem:

– choose quantities (amounts, wealth shares) so as to obtain the best
wealth distribution possible

• How do we compare random outcomes?

– expected utility (Von Neumann Morgenstern - VNM) of outcome:
E[u(w̃)]

– the utility function embodies attitudes towards risk of the decision
maker

Some remarks
• The optimization problem cannot have a solution if there are

arbitrage opportunities

• Reminder: an arbitrage is a way to generate a strictly positive pay-off
without committing any funds

• The existence of a solution to a portfolio optimization problem thus guar-
antees the existence of a strictly positive stochastic discount factor (see
below). We will see this principle in action

Arbitrage, the law of one price and SDFs
• A stochastic discount factor is a random variable m̃ such that for any

pay-off x̃, the market price can be recovered:

p = E[m̃x̃].

• The law of one price is equivalent to the existence of a stochastic discount
factor. The absence of arbitrage is equivalent to the existence of an almost
everywhere strictly positive discount factor. Broadly speaking, strict
positivity ensures that a (possibly synthetic) asset with strictly positive
payoff cannot have a strictly negative price (this would be an arbitrage).

• In the return space, the above relationship reads:

E[m̃R̃] = 1.
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• The expectation of the discount factor is linked to the risk free rate:

E[m̃](1 + rf ) = 1.

• In the excess return space, this reads:

E[m̃(r̃ − rf )] = 0.

• We thus have, in the presence of a risk free asset1:

E[r̃]− rf = −Rfcov(m̃, R̃),

which describes the structure of risk premia across assets as a result of the
covariances with the SDF.

Reminder on utility functions (1)
• VNM utility functions are determined up to a linear transformation

• Absolute risk aversion: α(w) = −u′′(w)/u′(w)

• Relative risk aversion: ρ(w) = wα(w)

• Risk tolerance: τ(w) = 1/α(w)

• Additive certainty equivalent: for a centered distribution ε̃a and an initial
level of wealth w, find πa(w, ε̃a) such that:

u(w − πa) = E[u(w + ε̃a)].

• Multiplicative certainty equivalent: for a centered distribution ε̃m and an
initial level of wealth w, find πm(w, ε̃m) such that:

u(w(1− πm)) = E[u(w(1 + ε̃m))].

Reminder on utility functions (2)
• For small (centered) additive risks of variance σ2: πa ≈ 1

2σ
2
aα(w)

• For small (centered) multiplicative risks of variance σ2: πm ≈ 1
2σ

2
mρ(w)

1Write the discount factor condition as:

E[m̃R̃] = E[(m̃− E[m̃] + E[m̃])R̃] = 1,

and use the fact:
E[(m̃− E[m̃])R̃] = Cov(m̃, R̃).
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Some important utility functions
• CARA: u(w) = − exp(−αw)

– range: R
– absolute risk aversion: α(w) = α

• CRRA:
uρ(w) = c1−ρ

1− ρ , ρ ≥ 0, ρ 6= 1,

uρ(w) = log(w), ρ = 1,

– range R∗+
– relative risk aversion: ρ(w) = ρ

CRRA utility functions - fig 1
Utility functions and return distributions

• Utility functions often have a restricted domain (frequently: positive
consumption)

• Assumptions on return distributions have to be consistent

• For example, CRRA models require R̃ ≥ 0 i.e. r̃ ≥ −1. This assumption is
sometimes called ‘limited liability’: the owner of an asset cannot end up
having to transfer cash to the issuer.

• This is a problem mainly for discrete time models (or continuous times
models where prices can jump)

Absolute or relative?
• The key consideration is the dependence of risk attitudes vis-à-vis the level

of wealth

– intuition suggests people accept greater dollar risk as their wealth
rises

An important benchmark: CARA & normally distributed
returns

• Note that with normal returns, returns can be arbitrarily negative (no
limited liability). Accordingly, the range of the utility function is R.

• I assume that there is no labor income

• πππ = (πi)′i∈I
max
πππ

E[− exp(−αw̃)]

s.t. :
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Figure 1: Figure 1: CRRA utility functions
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w̃ = w0
∑
i∈I

πiR̃i

∑
i∈I

πi = 1.

CARA normal case (1)
• The random variable w̃ is normally distributed. In this case, we know that:

E[− exp(−αw̃)] = − exp(−αE[w̃] + (α2/2)V [w̃])]

= u(E[w̃]− (α/2)V [w̃]).

• Given that the function u(·) is increasing, the program consists in maximiz-
ing the certainty equivalent E[w̃]− (α/2)V [w̃], which reads, mean wealth
minus the variance of wealth weighted by one half absolute risk aversion.

CARA normal case (2)
• Preferences over the distribution of final wealth are thus entirely determined

by the mean and the variance of the wealth distribution. This is an example
of mean variance preferences.

• We have:
w̃ = w0

∑
i∈I

πiR̃i = w0 + w0
∑
i∈I

πir̃i

• The maximized criterion is thus (dividing by w0 > 0):

E[
∑
i∈I

πir̃i]− (αw0/2)V [
∑
i∈I

πir̃i].

CARA normal case (3)
• This is a standard mean-variance criterion, up to the fact that the risk

aversion parameter depends on the level of wealth.

– if this was not the case, optimal portfolio composition would be
independent of the wealth level; this would imply that the investor
take more dollar risk at higher wealth levels; in the CARA case, the
appetite for dollar risk is independent of the level of wealth; thus the
correction.

When do we get mean variance preferences?
• How general is mean variance ?

– preferences induced by utility functions will not, in general, correspond
to mean-variance; additional assumptions are needed.
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– when the distribution of portfolio returns is characterized by mean
and variance, all utility functions naturally lead to mean variance
preferences (see elliptic distributions).

– in the presence of stochastic labour income, mean variance needs to
be amended

CARA normal case (4)
• In the presence of normally distributed stochastic labor income, the optimal

programme is:
max
πππ

E[− exp(−αw̃)]

s.t.

w̃ = ỹ +
∑
i∈I

θix̃i

∑
i∈I

θipi = w0.

• It is this time more convenient to take as control variables the quantities:
(θi)i∈I .

CARA normal case (5)
• As before, we need to maximize the certainty equivalent: E[w̃]−(α/2)V [w̃].

This is equivalent to maximizing:

E

[∑
i∈I

θix̃i

]
− (α/2)V

[
ỹ +

∑
i∈I

θix̃i

]
.

• We can decompose the variance term as:

V [ỹ] + V

[∑
i∈I

θix̃i

]
+ 2Cov

(∑
i∈I

θix̃i, ỹ

)
.

CARA normal case (6)
• I give the result assuming there is a riskless asset.

• We assume the price of cash is p0 = 1, and the payoff x̃0 = 1 + rf .

• Using the budget constraint θ0 = w0 −
∑N
i=1 θipi, we can rewrite the

criterion as:

E

[
w0(1 + rf ) +

N∑
i=1

θi(x̃i − pi(1 + rf ))
]
− (α/2)V

[
ỹ +

N∑
i=1

θix̃i

]
.
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• Notation:

– θ is the N × 1 vector of quantities invested on each risky asset
– V [x̃] is the N ×N matrix where each (i, j) is the covariance of the

pay-offs of asset i and j. It is assumed to have full rank, so that no
financial asset is riskless or redundant.

– Cov(x̃, ỹ) is the N×1 vector where each entry measures the covariance
of a financial instrument with labour income

– E[˜̃x] is the N×1 vector of the expected excess pay-offs (x̃i−pi(1+rf ))
of the risky instruments instruments.

CARA normal case (7)
• The first order condition leads to, in matrix notation:

θ = V [x̃]−1
(
−Cov(x̃, ỹ) + 1

α
E[˜̃x]

)
.

• Remember that 1/α is risk tolerance.

• The structure of the solution is as follows: the optimal porfolio consists
of a hedging portfolio (which tries to replicate income variability using
financial assets) and a speculative portfolio which has the same structure
as in the case without labour income. The latter portfolio receives a weight
equal to risk tolerance.

Optimization and SDF
• I assume there is a solution πππ∗ to the following problem:

max
πππ

E[u(πππ′R̃̃R̃R)]

s.t.

πππ′eee = 1,

where eee is a vector where all components are equal to 1, and πππ is the vector
of asset proportions.

• The Lagrangian reads:

L = E[u(πππ′R̃̃R̃R)]− γπππ′eee,

and the first order condition reads:

E[u′(πππ′R̃̃R̃R)R̃̃R̃R] = γeee.

• Let:
m̃ = u′(πππ′∗R̃̃R̃R)

γ
.
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We then have:
E[m̃R̃̃R̃R] = eee,

i.e. for any asset i:
E[m̃R̃i] = 1.

In other words, we have built an SDF from the solution of the optimization
problem.

Mean variance efficiency
• A portfolio p with mean and variance (µp, σp) is dominated by a portfolio
q with mean and variance (µq, σq) if µq ≥ µp and σq ≤ σp with at least
one inequality being strict.

• A portfolio is efficient in the mean variance sense if it is not dominated by
any other portfolio.

• Domination is a preorder. An efficient portfolio is a maximal element for
the preorder. In particular, it is not a total order (all portfolio pairs cannot
necessarily be ordered).

Mean variance without a riskfree asset (1)
• The program: it consists in minimizing portfolio variance for a given level

of expected returns

min
πππ

V

[
N∑
i=1

πir̃i

]
= πππ′Σπππ

s.t.
N∑
i=1

πi = πππ′eee = 1

E

[
N∑
i=1

πir̃i

]
= πππ′µµµ = µp.

Mean variance without a riskfree asset (2)
• Bold notations denote vectors

– Σ is the covariance matrix of returns, which we assume invertible
– eee is a vector of ones
– r̃̃r̃r is the vector of returns
– µµµ is the vector of expected returns

• We assume µµµ 6= eee to avoid degeneracy
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Mean variance without a riskfree asset (3)
• Lagrangian for the optimization problem (a factor 1/2 is convenient):

1
2π
ππ′Σπππ − δ(πππ′µµµ− µp)− γ(πππ′eee− 1)

where I have introduced the Lagrange multipliers δ and γ.

• The necessary and sufficient first order condition (positive definite quadratic
problem) is:

Σπππ = δµµµ+ γeee,

or, assuming the covariance matrix is invertible:

πππ = δΣ−1µµµ+ γΣ−1eee.

Mean variance without a riskfree asset (4)
• Injecting this into the constraints leads to a system for the Lagrange

multipliers:
δµµµ′Σ−1µµµ+ γµµµ′Σ−1eee = µp,

δeee′Σ−1µµµ+ γeee′Σ−1eee = 1.

• Reminder: (
a b
c d

)−1
= 1
ad− bc

(
d −b
−c a

)
• It is useful to introduce two specific portfolios:

πππ1 = 1
eee′Σ−1eee

Σ−1eee,

πππµ = 1
eee′Σ−1µµµ

Σ−1µµµ.

Mean variance without a riskfree asset (5)
• We can write :

πππ = (δeee′Σ−1µµµ)πππµ + (γeee′Σ−1eee)πππ1 =

λπππµ + (1− λ)πππ1.

• Thus, any optimal portfolio is a combination of the two portfolios we
singled out:

– πππ1 is the minimum variance portfolio
– πππµ is another portfolio as soon as µµµ 6= eee
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Mean variance without a riskfree asset (6)
• A = µµµ′Σ−1µµµ, B = µµµ′Σ−1eee, C = eee′Σ−1eee.

λ = BCµp −B2

AC −B2 ,

σ2
p =

A− 2Bµp + Cµ2
p

AC −B2 .

• Check this.

• The efficient frontier (in the standard deviation mean space) is the subset
of non dominated portfolios in the set:

{(σp, µp), µp ≥ µ1}

where µ1 = πππ′1µµµ.

Mean variance without a riskfree asset (7) - fig 2

Figure 2: Figure 2: Efficient Frontier (without a risk free asset)

Mean variance without a riskfree asset (8)
• I list the technical conditions below:

– we assume that µµµ and eee are not colinear
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– we assume eee′Σ−1µ > 0µ > 0µ > 0

– we have eee′Σ−1eee > 0 as Σ−1 defines a positive definite quadratic form

– we have
(
µµµ′Σ−1eee

)2
<
(
eee′Σ−1eee

) (
µµµ′Σ−1µµµ

)
from the Cauchy-Schwartz

inequality and eee′Σ−1eee > 0.

Mean variance with a riskfree asset (1)
• It is convenient in this case to use the notation πππ to denote the vector of

positions on the risky assets (see the slide on the space of excess returns).
The cash position is thus:

π0 = 1− eee′πππ.

• The vector πππ is unconstrained. The optimization problem can be written:

min
πππ

πππ′Σπππ

s.t.

πππ′(µµµ− rfeee) = µp − rf .

• For reasons that will be clear below, I assume eee′Σ−1(µµµ− rfeee) > 0.

Mean variance with a riskfree asset (2)
• First order condition for the Lagrangian: πππ = δΣ−1(µµµ− rfeee)

• From (µµµ− rfeee)′πππ = µp − rf , we get the value of δ and then the value of πππ:

πππ = µp − rf

(µµµ− rfeee)′Σ−1(µµµ− rfeee)Σ−1(µµµ− rfeee).

• The standard deviation of the portfolio is:

|µp − rf |√
(µµµ− rfeee)′Σ−1(µµµ− rfeee)

.

Mean variance with a riskfree asset (3)
• The tangency portfolio is:

π∗π∗π∗ = 1
eee′Σ−1(µµµ− rfeee)Σ−1(µµµ− rfeee).

• It is a portfolio fully invested in risky assets which is on the overall efficient
frontier. It is thus also on the risky asset efficient frontier.
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Figure 3: Figure 3: Efficient Frontier (with risk free asset)

Figure 4: Figure 4: Efficient Frontier (with risk free asset): iso-utility curves
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Mean variance with a riskfree asset (4) - fig 3
Mean variance with a riskfree asset (4) - fig4
Data for the graphs (1)

• Two risky assets:
– µ1 = 0.05, σ1 = 0.12
– µ2 = 0.07, σ2 = 0.16
– ρ = 0.7
– (µ1 − r)/σ1 = 0.33
– (µ2 − r)/σ2 = 0.375
– π1π1π1 = (0.93, 0.07)
– vol(π1π1π1) = 0.12
– π∗π∗π∗ = (0.4, 0.6)
– vol(π∗π∗π∗) = 0.13
– sharpe(π∗π∗π∗) = 0.39

Data for the graphs (2)
• The graphs shown assume positive Sharpe ratios for the underlying assets.

This is the ‘normal’ situation. It ensures that the efficient frontier (with a
riskfree asset!) is upward sloping.

A different description of the efficient frontier (1)
• Maximize the expected return penalized for portfolio variance (ρ > 0):

max
πππ

rf + πππ′(µµµ− rfeee)− ρ

2π
ππ′Σπππ.

• Exercise: recover the lagrange multiplier of the traditional approach

• The criteria are given by quadratic utility functions, indexed by ρ

A different description of the efficient frontier (2)
• The first order condition reads:

(µµµ− rfeee) = ρΣπππ,

and this implies that the optimal portfolio is proportional to the tangency
portfolio.

• How much of the tangency portfolio π∗π∗π∗ does an investor with the above
preferences and beliefs buy?
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• From the first order condition of the utility maximization problem2, we
get that the weight π̂ = 1− π0 invested in the tangency portfolio is:

π̂ = 1
ρ

µ∗ − rf

var(r̃∗)
.

• We will remember that:
ρπ̂ = µ∗ − rf

var(r̃∗)
,

which is therefore independent of the risk aversion level of the investor.
This will play a role in the derivation of the CAPM.

Interpretation of the first order condition (1)
• Consider that the optimal portfolio of a mean-variance investor (p with

weights πππ) is tilted by adding a long-short portfolio πππδ. How does that
affect quadratic utility?

• The utility level changes by (first order approximation):

µδ − ρcov(r̃δ, r̃p)

= µδ − ρ
cov(r̃δ, r̃p)
var(r̃p)

var(r̃p),

= µδ − ρβ(r̃δ, r̃p)var(r̃p),
= µδ − ρπ̂β(r̃δ, r̃∗)var(r̃∗).

Interpretation of the first order condition (2)
• Because the quantity ρπ̂ is independent of ρ, the trade off between re-

turn and beta is a well defined consequence of the mean and variance
assumptions.

• Injecting the value of ρπ̂ into the first order condition delivers the quantity:

µδ − (µ∗ − rf )β(r̃δ, r̃∗).

• Given the optimality of the tangency portfolio, the above quantity should
be zero for all long short deviations to the tangency portfolio:

µδ = (µ∗ − rf )β(r̃δ, r̃∗).

• For long short portfolios which borrow to buy a stock, the condition reads:

(µi − rf ) = (µ∗ − rf )β(r̃i, r̃∗).
2The first order condition reads:

(µµµ− rfeee) = ρΣπππ.
Multiply both sides on the left by πππ′. Then use πππ = π̂πππ?.
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Interpretation of the first order condition (3)
• The above relationship embodies the return beta trade off embedded in

the mean variance assumptions.

• At this stage, no equilibrium assumption has been made. We are looking
at the implications of a portfolio being mean-variance optimal.

• Note that the tangency portfolio can be replaced by any other efficient
portfolio in the relationship.

The excess return-beta relationship (1) - fig 5

Figure 5: Figure 5: Return/beta relationship

The excess return-beta relationship (2) - fig 6
The two fund theorem and the CAPM

• We now move to equilibrium considerations. We assume all investors share
the same beliefs on expected returns and risk, and all choose mean variance
efficient portfolios.

• As a result, they all hold a mixture of the risk free asset and a unique
portfolio of risky asset, the tangency portfolio.

• This is an instance of the two fund theorem, which also holds in more
general contexts
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Figure 6: Figure 6: Imperfectly priced portfolios

• The risky asset portfolio should be equal to the market portfolio of risky
asset, with return rm. This gives:

(µi − rf ) = (µm − rf )β(r̃i, r̃m).

Illustration of the CAPM - fig 7
The low beta anomaly - fig 8
Equity pricing anomalies

• Take an investment universe (stocks) and an equity index

• Follow the steps:

– build equity portfolios by sorting stocks according to a financial
characteristic

– compute the beta of the portfolios and graph realized returns against
betas

– is the pricing error significant?

• Examples of characteristics: size, book value, momentum, beta, vol

• This procedure asks whether the index is mean variance efficient in sample

• The pricing errors should be statistically significant
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Figure 7: Figure 7: CAPM

Figure 8: Figure 8: The low beta anomaly
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Mean variance in practice: the challenges
• First, there is a question of interpretation: what is the investment horizon?

– in particular, this conditions the nature of the risky asset (bonds or
cash).

• One also needs to be clear on whether real returns or nominal returns are
considered

• Once this has been clarified, input data needs to be estimated:

– getting hold of expected returns
– getting hold of the covariance matrix

• The optimal portfolio is very sensitive to inputs

– garbage in, garbage out

Examples of implementations
• Give the same return to all risky assets

– this delivers the minimum variance portfolio, which is not optimal
unless the expected returns are truly equal across assets

• Link the return assumptions to the risk estimates

– this leads to various solutions. . .

• For returns: estimate the payoffs of the asset and derive the implies return
from the current asset price

• Example: ERC ?

Links
• Link to pdf

21


	Timing
	Instruments
	Returns
	Investment and returns
	Portfolios
	Budget constraints
	Borrowing
	Accounting for future wealth
	Some return arithmetic
	The space of excess returns
	The portfolio problem
	Some remarks
	Arbitrage, the law of one price and SDFs
	Reminder on utility functions (1)
	Reminder on utility functions (2)
	Some important utility functions
	CRRA utility functions - fig 1
	Utility functions and return distributions
	Absolute or relative?
	An important benchmark: CARA & normally distributed returns
	CARA normal case (1)
	CARA normal case (2)
	CARA normal case (3)
	When do we get mean variance preferences?
	CARA normal case (4)
	CARA normal case (5)
	CARA normal case (6)
	CARA normal case (7)
	Optimization and SDF
	Mean variance efficiency
	Mean variance without a riskfree asset (1)
	Mean variance without a riskfree asset (2)
	Mean variance without a riskfree asset (3)
	Mean variance without a riskfree asset (4)
	Mean variance without a riskfree asset (5)
	Mean variance without a riskfree asset (6)
	Mean variance without a riskfree asset (7) - fig 2
	Mean variance without a riskfree asset (8)
	Mean variance with a riskfree asset (1)
	Mean variance with a riskfree asset (2)
	Mean variance with a riskfree asset (3)
	Mean variance with a riskfree asset (4) - fig 3
	Mean variance with a riskfree asset (4) - fig4
	Data for the graphs (1)
	Data for the graphs (2)
	A different description of the efficient frontier (1)
	A different description of the efficient frontier (2)
	Interpretation of the first order condition (1)
	Interpretation of the first order condition (2)
	Interpretation of the first order condition (3)
	The excess return-beta relationship (1) - fig 5
	The excess return-beta relationship (2) - fig 6
	The two fund theorem and the CAPM
	Illustration of the CAPM - fig 7
	The low beta anomaly - fig 8
	Equity pricing anomalies
	Mean variance in practice: the challenges
	Examples of implementations
	Links

