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In this post, I shed some light on the volatility of the price process of a zero
coupon equity contract. The aim is to understand how the volatility of prospective
expected returns impacts the volatility of the price process. I derive under a
specific condition1 a simple accounting relationship linking price volatility on one
hand and cash flow as well as discount factor volatility on the other hand. There
is some empirical presumption that markets exhibit excess volatility, i.e. that
market prices are more volatile than warranted by cash flow volatility. Under the
afore mentionned condition, this requires that discount rate shocks be negatively
correlated with cash flow shocks2.

Accounting for volatility
It was shown at the end of this post that the volatility of the price
process (Pt)t∈[0,T ] was equal to that of the martingale (Yt)t∈[0,T ] with
Yt = Et[exp(−

∫ T

0 rudu)XT ]. We want to understand how this relates to the
volatility of the fundamental solution, i.e. the volatility of (Xt)t∈[0,T ] with
Xt = Et[XT ]. To be clear, volatility is meant here as the integrand of the
stochastic integral in the geometric representation of each process. For instance,
the volatility of the martingale (Xt)t∈[0,T ] is the process (ηt)t∈[0,T ] such that:

dXt

Xt
= ηtdBt.

We want to relate the volatility Z of P , i.e. the volatility of the martingale
Y , with the volatility of the martingale X and that of the martingale R =
(Et[exp(−

∫ T

0 rudu)])t∈[0,T ]. By definition, these martingales follow drift-less
diffusions with the relevant terminal conditions:

• X: dXt = XtηtdBt, with terminal value XT ,
1Deterministic volatilies (see Assumption H). A later post will extend the volatility

identity to a more general context.
2Although natural, this condition is not strictly equivalent to excess volatility. This will be

detailed in a later post.
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• R: dRt = RtνtdBt, with terminal value exp(−
∫ T

0 rudu),
• Y : dYt = YtZtdBt, with terminal value exp(−

∫ T

0 rudu)XT (1) ,

Now the process XR follows (Ito):

d(XtRt) = XtRtηtdBt +XtRtνtdBt +XtRtηtνtdt

and has the same terminal condition as (1). It does not define a martingale
given that the drift term is not equal to zero. It is therefore not a solution to
(1). We can however easily modify this process to solve (1) when the following
assumption holds:

Assumption H: Both volatility processes (ηt)t∈[0,T ] and (νt)t∈[0,T ] are deter-
ministic

Indeed, consider the process Wt = XtRt exp(−
∫ T

t
ηuνudu) under this assump-

tion. This is a well defined adapted process because although all terms in the
exponential relate to the future, they are deterministic and therefore do not
involve future shocks. The Ito rule implies:

dWt = Wt(ηt + νt)dt,

and obviously we have WT = XTRT = exp(−
∫ T

0 rudu)XT . We have thus
identified the martingale representation of YT and therefore the volatility process
of P:

Zt = ηt + νt.

Proposition: Price volatility Zt is under Assumption H the sum of funda-
mental volatility ηt and discount factor volatility νt.

The meaning of ‘discount factor volatility’ can be clarified further. Discount factor
volatility is the volatility (νt)t∈[0,T ] of R. It is tied to the integral representation:

exp(−
∫ T

0
rudu) = E0[exp(−

∫ T

0
rudu)] +

∫ T

0
Eu[exp(−

∫ T

0
rwdw)]νudu.

In addition, we have:

Et[exp(−
∫ T

0
rudu)] = E0[exp(−

∫ T

0
rudu)] +

∫ t

0
Eu[exp(−

∫ T

0
rwdw)]νudu.

Injecting this identity in the above equation and dividing the result by
exp(−

∫ t

0 rwdw), we get:

exp(−
∫ T

t

rudu) = Et[exp(−
∫ T

t

rudu)] +
∫ T

t

Eu[exp(−
∫ T

t

rwdw)]νudu

which is the martingale representation of exp(−
∫ T

t
rudu). It entails the volatility

process (νu)u∈[t,T ]. The quantity νt can thus the be interpreted as the elasticity
(the log derivative) of exp(−

∫ T

t
rudu) to the shock dBt.
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We saw in this post that the market price has the following representation:

Pt = Et[exp(−
∫ T

t

rudu)XT ].

Intuitively, this suggests that the elasticity of Pt to dBt either arises from that
of XT or from that of exp(−

∫ T

t
rudu). This thus turns out to be true under

Assumption H.

Excess volatility
I assume now that fundamental volatility ηt is positive. This is just a normaliza-
tion3 which ensures that positive Brownian shocks raise the expectation of the
terminal payoff. Given the above proposition, we now have two polar cases:

• If νt is positive, price volatility is greater than fundamental volatility
Zt = ηt + νt ≥ ηt. This requires that a positive cash flow shock raises
the prospective discount factor exp(−

∫ T

t
rudu), i.e. lowers the cumulated

prospective return.

• If νt is negative, price volatility is lower than fundamental volatility
Zt = ηt + νt ≤ ηt. This requires that a positive cash flow shock lowers
the prospective discount factor exp(−

∫ T

t
rudu), i.e. raises the cumulated

prospective return.

The former situation is called excess volatility. A story rationalizing excess
volatility is as follows. When negative cash flow news hits the market, the price
of the fundamental solution falls to reflect the lower cash flows. Yet this also
spooks investors who require a greater expected return on the contract to hold
it. The prospective return therefore rises and this amplifies the price move
downwards. The reverse effect occurs on the upside.

Links
• Link to pdf

3If ηt was negative, we would just redefine the underlying Brownian to be W = −B. This
change of sign preserves the Brownian property.
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