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This post introduces zero coupon contracts, contracts which promise a single
payment at a fixed date T . Truthful to this introductory post, the price process is
derived backwards. The terminal pay-off is modeled as a random variable usually
not known before maturity. The price process is then defined as adapted to the
filtration, with a drift which is the instantaneous expected return and converging
to the terminal pay-off at maturity. This is an example of a very simple backward
stochastic differential equation. The data of the zero coupon contract is the
terminal pay-off and the drift (expected return) process. A key component of the
solution is the volatility of the price process, which can be related to the data of
the problem.

Introduction
This note introduces a stylized financial contract, the zero coupon contract.
The simple structure of this contract allows to discuss price dynamics without
being bogged down in unnecessary complexity. The important features of price
dynamics stand out clearly. We will see that price dynamics should be conceived
as the solution to a terminal value problem. This will lead us to introduce the
concept of a backward stochastic differential equation. This approach should be
contrasted with the usual practice of specifying ad-hoc forward dynamics.

A financial contract is the promise of a stream of payments, usually spread across
several periods. This latter feature creates analytical challenges. We will instead
assume that our contract specifies a single payment at a given date T . This is
what we call a zero coupon contract.

In the day to day practice of plain vanilla finance, the range of questions raised
by the potential buyer of the contract is, ‘what is this payment likely to be?
How uncertain is it? What is the worst case? What is the best case? How
likely is the worst case? How likely is the best case?’. Once these questions
have been answered (qualitatively at least), the buyer can judge whether the
current price is attractive or not, i.e. whether the contract has the right return
to risk characteristics. He will be able to form expectations on the distribution
of the return to maturity. If the contract is liquid, the buyer can raise the same
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questions tomorrow and the day after, given the observed behavior of the market
price. He can form short term expectations of the return. The realized short
term return will be made up of its expected value and a surprise. This surprise
will perhaps correspond to a change in the likely terminal payment. If not, the
buyer will be able to conclude that the expected return to maturity has changed.

Zero coupon dynamics: the fundamental solution
To be relevant, modeling should closely mimic the above logic. To be specific,
I’ll assume that uncertainty in the model is driven by a Brownian motion
B = (Bt)t∈[0,T ] and that the filtration F is the minimal filtration generated by
B and satisfying the usual conditions. I now proceed to introduce the relevant
mathematical objects. The terminal payment is an FT− measurable random
variable XT . Technically, we impose the square integrability and strict positivity
(almost surely) of XT . The technical conditions should make sure that we can
apply the martingale representation theorem. We also need all processes to be
almost surely strictly positive to formulate dynamics in a geometric way.

At a given date 0 ≤ t ≤ T , the expectation of the terminal payment is Et[XT ]
which we will denote by Xt. What is the dynamics of (Xt)t∈[0,T ]? This process
is a martingale and the martingale representation theorem tells us that there is
an adapted process ζ = (ζt)t∈[0,T ] such that:

Xt = X0 +
∫ t

0
ζudBu.

This can be written in differential form:

dXt = ζtdBt.

This makes it clear that ζt measures the change in the expectation Et[XT ]
that results from the shock dBt. To stress the backward angle to expectations
dynamics, we note that expectations satisfy the equation:

Xt = XT −
∫ T

t

ζudBu.

This emphasizes the fact that expectations converge to the terminal variable XT

which is the key piece of data in this problem. Finally, X is strictly positive
and we can write ηt = ζt/Xt. The process η is called volatility process and the
dynamics is determined by a geometric stochastic differential equation:

dXt

Xt
= ηtdBt.

A historically important model of asset price dynamics is obtained when Pt =
Xt = Et[XT ]. In this case, the price dynamics are determined by a stochastic
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integral. At any point in time, the price is expected to remain constant and
all its fluctuations come from revisions in the expected value of the terminal
payment. Periods where ηt is low (respectively high) correspond to periods
where the newsflow on the terminal payment is light (resp. heavy). We will call
(Xt)t∈[0,T ] {the fundamental solution} of the zero coupon contract.

The case of a constant expected return
A more realistic model assumes that the financial contract has a con-
stant positive expected return r. We now have to modify the price
dynamics. We assume that the price process is adapted and follows
a geometric diffusion with drift r:

dPt

Pt
= rdt+ ZtdBt.

We still want to complete this with the requisite that the price process
at date T equals the terminal payment XT , any other value leading
to an unrealistic arbitrage. We would therefore hope to be able to
specify the complete dynamics with the terminal condition as:

dPt

Pt
= rdt+ ZtdBt, PT = XT

The stochastic differential equation is really the shorthand for:

Pt = P0 +
∫ t

0
rPudu+

∫ t

0
ZuPudu,

and, to emphasize the terminal value condition, we can write:

Pt = XT −
∫ T

t

rPudu−
∫ T

t

ZuPudu.

A natural candidate for a solution is:

Pt = exp(−r(T − t))Xt = Et[exp(−r(T − t))XT ],

and this indeed works. It is easily checked by applying Ito:

d(exp(−r(T − t))Xt) = r exp(−r(T − t))Xtdt+ exp(−r(T − t))XtηtdBt,

or:
dPt = rPtdt+ ηtPtdBt.

We have thus found a solution to our problem, with Zt = ηt, i.e. the
volatility of the fundamental solution. This solution rises in expecta-
tions at a rate r and its fluctuations entirely reflect revisions of the
terminal payment XT .
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The case of an exogenous expected return
We now assume we have a stochastic expected return process
(rt)t∈[0,T ]. For the given terminal payment XT and the given expected
return process (rt)t∈[0,T ] (the data), we are looking for an adapted
price process (Pt)t∈[0,T ] with an adapted volatility function (Zt)t∈[0,T ]
such that:

dPt

Pt
= rtdt+ ZtdBt, PT = XT .

In integral form, we are trying to solve:

Pt = XT −
∫ T

t

ruPudu−
∫ T

t

ZuPudu.

This is an instance of a backward stochastic differential equation.

We observe that if there is a solution, we should have the following
representation:

Pt = Et[exp(−
∫ T

t

rudu)XT ].

Note that this is indeed equivalent to:

exp(−
∫ t

0
rudu)Pt = Et[exp(−

∫ T

0
rudu)XT ] = Et[exp(−

∫ T

0
rudu)PT ],

but then if P and Z are solutions, the left hand side has to be a
martingale (apply Ito) which means that the above equation should
hold for any solution.

As for existence, it directly follows from the above observation. The
variable Yt = Et[exp(−

∫ T

0 rudu)XT ] defines a continuous martingale. It
can be represented as a Brownian integral:

dYt = YtZtdBt.

If we define Pt through Pt = exp(
∫ t

0 rudu)Yt and we apply Ito, we get:

dPt = rtPtdt+ ZtPtdBt.

We have thus found a solution to our simple backward stochastic
differential equation.

In all cases we have seen, the volatility of the price is determined
by the volatility of the martingale (Et[exp(−

∫ T

0 rudu)XT ])t∈[0,T ]. When
(rt)t∈[0,T ] is deterministic, this is the same thing as the volatility of the
martingale (Et[XT ])t∈[0,T ], i.e. fundamental volatility. But in general,
it is not. We will come back to this in a later post.
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Summary
We have thus found a description of the price process which sticks to
the financial logic. What drives the dynamics is two things:

• revisions of the terminal pay-off, as reflected in the dynamics of
the fundamental solution (Xt)t∈[0,T ],

• changes in the expected return.

These two items determine the volatility function of the price process.
We will see that price volatility obeys an accounting identity that
links it to the two items above. There is thus more structure that
in a traditional forward stochastic differential equation. As argued
above, this structure is ideally suited to raising investment questions.

Note: A short and clear introduction to backward stochastic differ-
ential equation, Hu[2013] can be found here.

References: Hu Y., 2013, Backward Stochastic Differential Equations
and Applications in Finance, Lecture Notes, Rennes University.
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