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Guillaume Rabault

This post introduces the Ito rule of stochastic calculus. This rule provides the
semimartingale decomposition of a nonlinear (this being the non trivial case)
function of given semimartingales. Its simplest incarnation is the product rule of
stochastic calculus which gives the semimartingale decomposition of the product
of two given semimartingales.

Ito calculus for simple polynomial expressions
All semimartingales considered below are assumed continuous.

In this post (I will use the same notation), we established the following algebraic
identity :

X2
t −X2

0 =
k∑

i=1
2Xti−1(Xti −Xti−1) +

k∑
i=1

(Xti −Xti−1)2,

along a grid π[0,t] satisfying t0 = 0, tk = t. Applying the polarization identity1

we can derive :

XtYt −X0Y0 =
k∑

i=1
Yti−1(Xti

−Xti−1) +
k∑

i=1
Xti−1(Yti

− Yti−1)+

k∑
i=1

(Xti
−Xti−1)(Yti

− Yti−1).

We will concentrate on this last relationship since it contains the other one as a
special case.

The terms on the right hand side have the following behavior as a function of
the nature of (Xt)t∈[0,T ] when the grid gets refined:

• If (Xt)t∈[0,T ] and (Yt)t∈[0,T ] are continuous local martingales, the last
term converges to the cross variation ([X,Y ]t)t∈[0,T ] and the other terms

1ab = 1
4 [(a + b)2 − (a − b)2].
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converge to stochastic integrals. We have :

XtYt −X0Y0 =
∫ t

0
XudYu +

∫ t

0
YudXu + [X,Y ]t. (1)

• If (Xt)t∈[0,T ] and (Yt)t∈[0,T ] are continuous bounded variation processes,
the last term converges to2 0 and the first two terms converge towards the
obvious Lebesgue Stieltjes integrals. Thus :

XtYt −X0Y0 =
∫ t

0
XudYu +

∫ t

0
YudXu. (2)

We can also study what happens when one of the process is a local continuous
martingale, say (Xt)t∈[0,T ] while the other one, say (Yt)t∈[0,T ], is continuous
bounded variation process. In this case, on can make use the following identity :

XtYt −X0Y0 =
k∑

i=1
Xti

(Yti
− Yti−1) +

k∑
i=1

Yti−1(Xti
−Xti−1).

The dominated convergence theorem of Lebesgue Stieltjes integration shows that
the first term converges to the Lebesgue Stieltjes integral3 (

∫ t

0 XudYu)t∈[0,T ] while
the second term, as usual, converges to the stochastic integral (

∫ t

0 YudXu)t∈[0,T ].
We thus get :

XtYt −X0Y0 =
∫ t

0
XudYu +

∫ t

0
YudXu. (3)

It is convenient to summarize these results in differential notation. The logic of
the notation, illustrated on the productXtYt of two local martingales, is as follows.
We write XtYt −X0Y0 =

∫ t

0 d(XuYu). Similarly, [X,Y ]t = [X,Y ]t − [X,Y ]0 =∫ t

0 d[X,Y ]u. We can then write equation (1) as :

d(XuYu) = XudYu + YudXu + d[X,Y ]u.

We can wrap up the cases we saw as follows :

• (Xt)t∈[0,T ] and (Yt)t∈[0,T ] are local martingales :

d(XuYu) = XudYu + YudXu + d[X,Y ]u (equation 1).
2The cross variation of two bounded variation functions is zero. This can easily be deduced

from the fact that the quadratic variation of each process is null and using the Cauchy Schwartz
inequality.

3In Lebesgue Stieltjes integration, the sums
∑k

i=1 Xti (Yti − Yti−1 ) and
∑k

i=1 Xti−1 (Yti −
Yti−1 ) converge to the same result, the integral

∫ t

0 XudYu. Within stochastic integration,
i.e. when (Yt)t∈[0,T ] is a local martingale, the two sums differ. The second expression
converges to the Ito integral

∫ t

0 XudYu while the first converges to
∫ t

0 XudYu + [X, Y ]t.
The Stratonovitch integral is defined as the limit of the average of the two weighted sums,
namely

∫ t

0 XudYu + 1
2 [X, Y ]t.
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• (Xt)t∈[0,T ] and (Yt)t∈[0,T ] are of bounded variation :

d(XuYu) = XudYu + YudXu (equation 2).

• (Xt)t∈[0,T ] is of bounded variation and (Yt)t∈[0,T ] is a local martingale :

d(XuYu) = XudYu + YudXu (equation 3).

.

In the special case where X is equal to Y , we have :

• (Xt)t∈[0,T ] is a local martingale : dX2
u = 2XudXu + d[X]u.

• (Xt)t∈[0,T ] is of bounded variation : dX2
u = 2XudXu.

From product rules to Ito calculus
We now consider two continuous semimartingales (Xt)t∈[0,T ] and (Yt)t∈[0,T ] with
their decompositions :

Xt = Mt +At,

Yt = Nt +Bt,

into their local continuous martingale component ((Mt)t∈[0,T ] and (Nt)t∈[0,T ])
and their continuous bounded variation process ((At)t∈[0,T ] and (Bt)t∈[0,T ]). We
can write :

d(XuYu) = XudYu + YudXu + d[X,Y ]u
= XudBu + YudAu +XudNu + YudMu + d[X,Y ]u,

with [X,Y ]u = [M,N ]u. We note that if X or Y is actually a bounded variation
process, then [X,Y ]u = 0.

This decomposition of d(XuYu) is actually the semimartingale decomposition of
(XtYt)∈[0,T ] into its local martingale component :∫ t

0
XudNu +

∫ t

0
YudMu,

and its finite variation component :∫ t

0
XudBu +

∫ t

0
YudAu + [X,Y ]t.

We can thus compute d(XuYuZu) for a third semimartingale (Zt)t∈[0,T ] by
considering the product of the three semimartingale XuYuZu as a product of
two semimartingales (XuYu)Zu. This remark leads to consider the differential
of polynomial functions of a set of underlying semimartingales.
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One can show by recurrence along the above lines that for any polynomial
expression F (X1,u, X2,u, . . . , Xn,u) in n semimartingales, we have :

dF (X1,u, . . . , Xn,u) =
∑

i

F ′
i (X1,u, . . . , Xn,u)dXi,u+

1
2

∑
i,j

F ′′
i,j(X1,u, . . . , Xn,u)d[Xi, Xj ]u.

The reader can check that this works for all simple polynomials considered in
the first section, and that if it works for two polynomial expressions, it works for
their product.

What then remains to be seen is whether this can be applied to general twice
continuously differentiable functions. This is indeed the case. The key step in
the proof of this result consists in restricting the semimartingales to compact
subspaces through localization, and then approximate the function with polyno-
mials. In a compact domain, a twice continuously differentiable function together
with its first and second derivatives can be arbitrarily closely approximated (in
the sense of uniform convergence) by a polynomial.

To conclude, let’s state Ito’s formula precisely :

Theorem (Ito’s Formula): Consider n continuous semimartingales
(X1,t, . . . , Xn,t) with t in [0, T ] and a twice continuously differentiable function
of n variables F : Rn → R. Then we have with probability one for all u in [0, T ]:

dF (X1,u, . . . , Xn,u) =
∑

i

F ′
i (X1,u, . . . , Xn,u)dXi,u+

1
2

∑
i,j

F ′′
i,j(X1,u, . . . , Xn,u)d[Xi, Xj ]u,

or in integral form, for all t in [0, T ]:

F (X1,t, . . . , Xn,t)− F (X1,0, . . . , Xn,0) =
∑

i

∫ t

0
F ′

i (X1,u, . . . , Xn,u)dXi,u+

1
2

∑
i,j

∫ t

0
F ′′

i,j(X1,u, . . . , Xn,u)d[Xi, Xj ]u.

�

This theorem singles out the semimartingale decomposition of the process
(F (X1,t, . . . , Xn,t))t∈[0,T ]. If we decompose each semimartingale (Xi,t)t∈[0,T ] into
its bounded variation component (Ai,t)t∈[0,T ] and its local martingale component
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(Mi,t)t∈[0,T ], then the bounded variation component of (F (X1,t, . . . , Xn,t))t∈[0,T ]
is :∑

i

∫ t

0
F ′

i (X1,u, . . . , Xn,u)dAi,u + 1
2

∑
i,j

∫ t

0
F ′′

i,j(X1,u, . . . , Xn,u)d[Xi, Xj ]u,

while the local martingale component is:

∑
i

∫ t

0
F ′

i (X1,u, . . . , Xn,u)dMi,u.

Note : This post takes its inspiration from section IV.32 of Rogers[2000].

Reference: Rogers L.C.G. and D. Williams[2000] : Diffusions,Markov Processes
and Martingales, Vol 2, Ito Calculus, Cambridge University Press.
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