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As explained in this post, stochastic integration has initially been developed under
the condition E

[∫ T

0 H2
s d[M ]s

]
<∞. This condition has then been replaced by

the more general condition P
(∫ T

0 H2
s d[M ]s <∞

)
= 1. This turns out to be the

most general integrability condition under which stochastic integration can be
defined. This post introduces the idea behind this generalization. The process
whereby stochastic integration is thus generalized is called localization. In words,
the above condition means that the set of trajectories for which integrated variance
remains bounded should have probability one.

Localizing stochastic integrals
This post on the stochastic integral emphasized the role of the quadratic variation
in its definition. The quadratic variation of the integrator (a continuous martin-
gale in effect) allowed to define a norm on the integrand space (some subspace
of predictable processes, effectively incorporating a boundedness condition) so
that a given suitable integrand could be approximated by simple predictable
processes, the approximation process being controlled by the norm. For each
simple predictable process, we have an explicit definition of the stochastic in-
tegral. The construction then consisted in making sure that as we get closer
to the integrand using our simple processes the value of the integral stabilizes
around a well defined random variable, which is our stochastic integral.

This construction is done for a given time interval [0, T ] and delivers a random vari-
able

∫ T

0 HsdMs. The construction loses sight of the process obtained when time
is allowed to vary. We would like to consider the trajectories (

∫ t

0 HsdMs)t∈[0,T ]
however. Fortunately, the process dimension can be recovered, and in our
case (the integrator is a continuous martingale), (

∫ t

0 HsdMs)t∈[0,T ] can be given
continuous trajectories. Intuitively, the integral weighs the increments of the
continuous martingale. The weighting scheme cannot break the continuity of
the original martingale. This is easily verified for simple integrands. One needs
to check that the continuity of the trajectories is preserved in the convergence
process. It does. The proof of this result uses the fact that uniform limits of
continuous functions are continuous.
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The stochastic integral is initially defined under the boundedness condition:

E

[∫ T

0
H2

s d[M ]s

]
<∞, (*)

using L2 Hilbert space techniques. The stochastic integral can still be defined if:

E

[∫ T

0
H2

s d[M ]s

]
=∞,

provided:

P

(∫ T

0
H2

s d[M ]s <∞

)
= 1.

One can then indeed identify an increasing sequence of sets of time and events
which union is whole space [0, T ]×Ω, and such that when restricted to each one
of the sets in the sequence, the previous expectation (integral) is finite. This
is done using stopping times (Tk)k∈N , with each set of time and events being
defined as {(t, ω)|t ≤ Tk(ω)}. On each of these sets, the restricted integral is
finite:

E

[∫ Tk

0
H2

s d[M ]s

]
<∞.

Finally, the sequence of stopping times converges almost surely to T . In other
words, the sequence of stopping times covers the time axis.

The set of stopping times is called a localizing sequence. It is used to define
localized (stopped) versions of (Hs)s∈[0,T ] and (Ms)s∈[0,T ] through:

• Hk
s = Hs on {(t, ω)|t ≤ Tk(ω)}, Hk

s = 0 on {(t, ω)|t Tk(ω)},
• Mk

s = Ms on {(t, ω)|t ≤ Tk(ω)}, Mk
s = MTk

on {(t, ω)|t Tk(ω)}.

The stochastic integral can then be defined for each stopped process (the right
boundedness conditions having been ensured by construction) leading to a stochas-
tic integral process which we can formally write down as (

∫ t

0 Hk
s dMk

s )t∈[0,T ]. It
can be shown for any two indices p and q ≥ p:∫ t

0
Hq

s dMq
s =

∫ t

0
Hp

s dMp
s

on {(t, ω)|t ≤ Tp(ω)}. One can thus glue all stopped integrals together to lead
to an unambiguous stochastic integral1:∫ t

0
HsdMs, t ≤ T.

1One can check that the construction is independent of the particular localizing sequence
that has been chosen.
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Stochastic integrals and local martingales
Relaxing the boundedness condition, we lose the property that the stochastic
integral is a continuous martingale. It is instead a local continuous martingale.
The concept of a local martingale is related to the previous construction. As
above, the construct is designed to tame unboundedness. Essentially, a local
martingale is a process coming with an increasing sequence of stopping times
which fully covers the time axis and such that each stopped version of the
process is a true martingale. Because in our construction above, the stopped
processes verified the boundedness condition, each ‘stopped stochastic integral’
is a martingale. It is thus expected that our extended stochastic integral
delivers a local martingale and it indeed does2. Finally, the integral can be fully
generalized by allowing integrators to be local continuous martingales instead of
true continuous martingales. First, local martingales have a proper continuous
quadratic variation. Second, to adapt the above construction to this case, one
needs to find a localizing sequence which both localizes the martingale and
ensures the boundedness condition (*). This is possible and is actually easy in
our case given the continuous trajectories of the local martingale.

In our context where integrators are continuous local martingales, the true
constraint on extending stochastic integration is the divergence of

∫ T

0 H2
s d[M ]s

on a non negligible set of trajectories. Heuristically, when this quantity explodes,
the stochastic integral oscillates wildly between +∞ and −∞ and its value
cannot be defined. This corresponds to the asymptotic behavior of the Brownian
motion at infinity (lim supt→∞ Bt = +∞, lim inft→∞ Bt = −∞). These wild
oscillations have to remain the unreachable horizon of our stochastic integrals.

The moral of the story
The objective of this post was to introduce localization. A lot of details have been
swept under the rug but hopefully, the logic is clear. Localization is the price we
have to pay to be able to develop stochastic integration without imposing ad-hoc
boundedness conditions. One can integrate local continuous martingales using
predictable processes. The outcome is a local continuous martingale. The key
condition which has to be enforced is that

∫ T

0 H2
s d[M ]s be almost surely finite.

This post opens the door to the nirvana of (continuous) semimartingales. Semi-
martingales are precisely the processes for which stochastic integration makes
sense. They decompose additively into finite variation processes and local mar-
tingales. We are one step away from semimartingales and we will remain there
in this post. Using semimartingales, we will be able to explicit the rules of Ito

2A boundedness condition is needed to prove that a local martingale is a true martingale.
Roughly speaking, the boundedness condition allows to apply the dominated convergence
theorem of Lebesgue integration (or the related Vitali convergence theorem). As a reminder,
the dominated convergence theorem identifies a sufficient condition for integration and limits
to commute.
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