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Building on the portfolio return post, this article describes the stochastic inregral∫ ·
0 HudMu of an integrand H against a martingale M as a martingale transform.

The integral re-weights the increments of M using a system of ‘predetermined’
weights in such a way that the resulting process remains a martingale. The preser-
vation of the martingale property is a key requirement of the standard stochastic
integration theory. The sensitivity of the resulting martingale

∫ ·
0 HudMu with

respect to the infinitesimal increments of M is an instanciation of the concept of
Malliavin derivative. The post ends by considering the martingale representation
property which plays a key role in financial theory.

Martingale Transforms
The portfolio return post took the perspective that a portfolio is a weighting
scheme applied to the returns of the available instruments. The weights are
chosen as a function of the information set of the portfolio manager. This leads
to a staggered information structure: weights depend on past information and
cannot anticipate future surprises in returns.

Martingale transforms can be understood from this perspective. Assume that we
are given a filtered probability space (Ω,F , (Ft)t∈T, P ) together with a martingale
(Mt)t∈T. Let’s assume a discrete time setting T = N. The martingale differences
∆Mt = Mt −Mt−1 are our surprises. Let’s weigh them using a Ft−1 random
variable Ht−1. We get the reweighted martingale difference:

Ht−1∆Mt = Ht−1(Mt −Mt−1),

which is still a martingale difference in the sense that:

Et−1[Ht−1∆Mt] = Ht−1Et−1[∆Mt] = 0.

Cumulating these differences leads to a new martingale (M̃t)t∈T:

M̃t =
t∑

k=1
Hk−1∆Mk
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which is centered E0[M̃t] = 0. This is the discrete time stochastic integral.

In continuous time (T = R+), the staggered information structure is more subtle.
The key to the construction of the stochastic integral is that we want it to
preserve the martingale property. The construction starts with the definition of
simple weights, i.e. piecewise constant weighting schemes, where discontinuities
take place at stopping times (Ti)i∈N, T0 = 0:

Ht =
N−1∑
i=0

Hi1(Ti,Ti+1](t),

where Hi is FTi
measurable. The key point is that the weight chosen at date Ti

is in place right after Ti, and up until Ti+1. In particular, at Ti, Hi−1 prevails.
When applied to the martingale differences, the simple weighting scheme delivers
for each ω:

M̃t =
∫ t

0
HudMu :=

J(t)−1∑
i=0

Hi(MTi+1 −MTi) +HJ(t)(Mt −MTJ(t)),

where J(t)(ω) is set such that TJ(t)(ω) ≤ t < TJ(t)+1(ω). The staggered infor-
mation structure implies that each increment is conditionally centered, and (M̃t)
is a centered (E0[M̃t] = 0) martingale as in the discrete time case.

The theory of stochastic integrals consists in extending this construction to more
general weighting schemes while preserving the staggered information structure.
We will be evasive about the technical conditions needed for stochastic integration
to work. We will however keep the information structure in mind. Integrands1

cannot anticipate on information. Adapted continuous processes (i.e. each Ht is
Ft measurable and trajectories are continuous) are suitable integrands. When
the underlying martingale is allowed to jump (while being continuous on the
right with limits on the left - cadlag), the integrands can also be allowed to
jump provided they are caglad (continuous on the left with limits on the right
- see the post on portfolio returns). These requirements are needed to ensure
that the stochastic integral of a valid integrand against a martingale remains a
martingale.

Sensitivity of a martingale to the underlying
shocks
A martingale (Mt)t∈T is the additive accumulation of the associated shocks,
whether these are true differences (∆Mt) as in the discrete time case or infinites-
imal idealizations (dMt). I use the discrete time case in what follows. Any

1The weighting function is called the integrand while the underlying martingale is called
the integrator.
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particular shock ∆Mu has a fully persistent impact on the subsequent level
(Mt)t≥u of the martingale. We could write this as:

∂Mt

∂∆Mu
= 1, t ≥ u.

We can see the stochastic integral as a method to create a new martingale with
a different sensitivity to the underlying shocks. The new sensitivity is a priori
given by Hu−1. This is right when the integrand is a deterministic function, in
which case we thus have:

∂M̃t

∂∆Mu
= Hu−1, t ≥ u.

When integrands are stochastic however, Hu−1 cannot measure the overall impact
of the shock on the future level of the new martingale. Indeed, the shock might
alter the integrand Ht at a future date. We would like to write:

∂M̃t

∂∆Mu
= Hu−1 +

t∑
u+1

∂Hv−1

∂∆Mu
∆Mv, t ≥ u.

The meaning of ∂Hv−1
∂∆Mu

is however quite unclear unlessHv−1 can itself be described
as a stochastic integral with deterministic integrand! The martingale (M̃t)t∈T
would then be a double stochastic integral.

What is sketched above is precisely the program of defining Malliavin derivatives,
initially developed for Brownian filtrations and integrals. The program can be
carried out because in the Brownian filtration, all square integrable random
variables can be approximated as a multiple stochastic integral2. As such, their
derivatives with respect to the underlying Brownian shocks can be computed.
We will not need the full force of this theory, but we will keep in mind the idea.
We will often use deterministic integrands for which Malliavin derivatives are
trivial. Stochastic Brownian integrals with deterministic integrands are Gaussian
variables. They are extremely handy because they allow to express a wide range
of phenomena while permitting analytical computation.

Martingales and martingale representation
Readers with a mathematical inclination could raise the following problem.
Stochastic integrals allow to produce new martingales from an initial one. Can
we produce all martingales in this way?

Let’s then start from a filtered probability space as above, with the filtration
being the filtration generated by a given martingale (Mt)t∈T. We take T to be
an interval within N or R. We therefore start with a minimal setup: a single
martingale described in the most parsimonious filtered probability space which

2See for instance D. Nualart, The Malliavin Calculus and Related Topics, Springer.
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can support it. We can now define new martingales using stochastic integration
based on suitably adapted integrands. We thereby get a wealth of new (centered)
martingales as stochastic integrals. On the other hand, any FT integrable
variable XT with mean E0[XT ] = 0 defines a centered martingale (Et[XT ]).
The latter set of centered martingales is a priori larger than the previous set
of centered martingales defined through stochastic integrals against the initial
martingale. Indeed a stochastic integral is a closed centered martingale:∫ t

0
HudMu = Et[

∫ T

0
HudMu].

The question is then whether the inclusion is strict3. It turns out again that in
the Brownian filtration, the two sets of martingales coincide. Martingales can
be represented as stochastic integrals: the martingale representation theorem
holds. A similar result holds when the underlying martingale is the compensated
Poisson process. There are however plenty of cases where the inclusion is strict.
I give below two trivial examples that shed some light on what is going on.

I assume an extreme discrete time case, with only two dates T = 0, 1. The
sigma algebra F0 is trivial and F1 is the sigma algebra generated by a variable ε.
Stochastic integrals are just proportional functions of ε since F0 random variables
(integrands) are constant. Assume ε is a standardized Gaussian variable. Consider
X1 = ε2 − 1. This defines a centered martingale which is not linear in ε. The
martingale representation theorem does not hold.

If instead, ε equals a binomial variable taking values +1 with probability 1/2 and
−1 with probability 1/2, the martingale representation theorem holds. Indeed,
any centered F1 measurable variable is defined by two values X1(1) and X1(−1)
such that:

1
2X1(−1) + 1

2X1(1) = 0.

Thus:
X1(−1) = −X1(1),

and:
X1 = X1(1)ε,

which is a stochastic integral since X1(1) is a constant.

This gives a good sense of why the compensated Poisson model has a martingale
representation theorem. In the Brownian case, it is clear that continuous time
plays an important role. One can perhaps close this post by noting that in this
case:

M2
1 − 1 =

∫ 1

0
MtdMt.

3This question has an important interpretation in finance, in a broader but related context.
In a market model, if all terminal pay-offs can be derived as a porfolio value (i.e. a stochastic
integral) where the portfolio trades underlying financial instruments, the market is said to
be complete. Completeness therefore means, loosely speaking, that a representation theorem
holds with respect to the tradable instruments.
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Moments shifted so as to be centered and more generally centered non linear
functions of M1 can be obtained as stochastic integrals. Continuous time does
achieve a few miracles!

Links
• Link to pdf
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