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This post introduces the notion of a martingale. The concept is key to finance,
but it is also central in stochastic analysis. A martingale is a process which, at
any given date, is expected to remain at its current level in the future. In other
words, its future increments (called martingale differences) are expected to be
equal to zero. Picking a variable Xr, the process (E¢[X1])iejo,1) 95 a martingale
which is ‘closed’ by X. The concept is illustrated using the discretized version of
a martingale, namely a random walk with centered increments. Continuous time
martingales with (loosely speaking) independent identically distributed increments
are called Levy martingales. The post introduces two Levy martingales, the
Brownian motion and the compensated Poisson proces.

The definition

The concept of a martingale is probably the most important concept in mathe-
matical finance. A martingale is a stochastic process which is expected at any
point in time to remain at the same level in the future.

To formally introduce the definition, we need to set up the landscape. We need
a probability space (2, F, P) where 2 is the sample space, F is a sigma-algebra
and P is a probability measure on (£, F). The sigma algebra is decomposed
into a filtration'. (F})er, i.e. an increasing family of sigma algebras. The index
set T can for instance be the set of natural numbers N or the positive real line
[0, 00]. The filtration models the flow of information. Conditional expectations
with respect to an element of the filtration, E[-|F;] will be noted E:[-].

In this context, a martingale is a stochastic process (M;);cr adapted to the
filtration (i.e. for each ¢, M; is F; measurable) such that:

My, = Ey [My,], Vi1 > to.

n continuous time, this filtration has to satisfy the so-called ‘usual conditions’, namely
the filtration is assumed to be continuous on the right and complete - cf. for instance Protter,
Stochastic Integration and Differential Equations, Springer.



A martingale can be obtained by first choosing a (F) random variable £ and
setting:

M, = E4[¢].

The random variable £ is said to close the martingale.

Martingale differences

When T = N, we can look at the martingale difference AM; = M; — M;_,. We
have:

EyAM;1] =0, k > 1,

i.e. the martingale difference is conditionally (and hence unconditionally) centered.
We also have (using the tower law of conditional expectations):

EJAM,yAMysy] =0, Vhok > 1, h # k.

Martingale differences have zero conditional (and thus unconditional) covariance.
The martingale difference process (AM;);>1.teT is a sequence of uncorrelated
random variables. The variables need not be independent.

Simulating discrete time martingales

In practice, a simple way to simulate a discrete time martingale consists in
drawing I sets of independent increments (Ami);>1teT1<i<s from a given
distribution using a pseudo random numbers generator. One can then compute
the martingale by cumulating the random draws:

mo = 07
t
i _ i
my = E Amg,.
k=1

The index ¢ plays the role of w (the ‘event’), it indexes the drawn trajectory.
The following graph shows a particular outcome (a particular sample), where
increments are drawn from the standardized Gaussian law. The graph illustrates
the key property of martingales for three chosen dates. As of each date, the
expected value of the martingale is represented by a horizontal dashed line. In
this example, the index set is an interval [0, 7] and the martingale is closed by
M.



A Random Walk
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Two interpretations

Several interpretations illustrate the importance of martingales for finance.

e A martingale can be seen as the cumulated pay-off of a player engaged
in a sequence of games where each game has a zero expected pay-off (fair
game).

¢ Financial instruments promise pay-offs such coupon payments or dividends.
Any such payment can be thought of as the closing random vari-
able of a martingale which is simply the expected value of the
payment. The expected value of the payment fluctuates as in-
vestors acquire information on it.

We will put a lot of emphasis on this latter perspective when discussing stochastic
integrals.

Expected pay-offs are necessarily a key ingredient in the pricing of financial
instruments.

From random walks to Levy martingales

We have seen how a discrete time martingale could be simulated, drawing
independently from a single distribution. The result is called a random walk?.
Discrete time modeling is very efficient as it allows to avoid thorny technical
questions. However, discretization relies on sampling assumptions which can
sound quite arbitrary. One can therefore wish to think of a discrete time process

2 A random walk need not have centered increments.
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as resulting from sampling an underlying continuous time process. This opens
up a number of interesting modeling issues. Here is an illustration.

If, starting from the previous random walk, one refines the initial grid adding
midpoints in between each set of successive dates, the original increments can
be additively decomposed into two pieces:

AMy = My — My = (My — My_1/2) + (My_1/2 — M;_1).

One can divide intervals in three, four or n subsets of equal length. Imposing
that the subdivivisions always entail independent, identically distributed (i.i.d.)
and centered increments preserves the structure applied to the initial random
walk martingale. When the operation can be carried out for any natural number
n, we say that the initial distribution is infinitely divisible.

Levy processes are designed on this idea®. The marginal law of any term M, is
infinitely divisible. The main examples of infinitely divisible distributions are
Gaussian, Poisson and compound Poisson distributions. Using these, we get the
Brownian process, the Poisson process or the compound Poisson process. In our
case, the increments have to be centered to obtain a martingale. This is achieved
by removing an adequate drift from the original process if needed, a procedure
called ‘compensation®’ (thus the term ‘Compensated Poisson process’).

The Brownian process has continuous sample paths whereas processes of the
Poisson type are cadlag (continuous on the right, with limits on the left) but
have jumps. Paraphrasing this in the context of our interpretation of martingales
as expectation of future dated outcome &7, we can say that in the case of a
Brownian martingale, information acquisition is rather evenly spread over time
while in the compensated Poisson case, information comes in a lumpy way, the
timing of the news being random.

To illustrate the diversity of martingale trajectories, I simulate below a compen-
sated Poisson process. This is done in the following way. We independently draw
I sets of N random (‘inter-arrival’) times using the exponential distribution of
parameter (intensity) A. This gives us a set of dates (t%)1<r<n,1<i<r. We then
define:

J N
mj =max{j| Yt <t} -, t< ) .
k=1 k=1

5

This is an example of a (compensated) point process®. Here is a graph of a

3See for example D. Applebaum, Levy Processes and Stochastic Calculus, Cambridge Studies
in Advanced Mathematics.

4Any Levy process (X;) such that E[|X¢|] < co can be ‘compensated’ and thus turned into
a martingale.

5A Poisson process is defined as above, but omitting the compensating term At. Relaxing
the exponential assumption on the distribution of the ‘inter-arrival’ times, we get a more
general point process.



particular trajectory (drawn using A = 1).

A Compensated Poisson

Keep in mind that although it might not be obvious from the trajectories, the
compensated poisson process has independent increments. As seen from the
graph, the compensated Poisson process falls at a rate A except at jump dates.
Changing the jump size from 1 to —1 (which is equivalent to applying a symmetry
around 0 on the y axis) would create a process that rises at a steady rate \ except
at jump dates where it falls. The increments of such a process have negative
skewness (a lot of small upward moves and a few big downward moves), which
is an empirical feature of market prices. This is in contrast to the Brownian
motion, which increments have a symmetric distribution.

In the above example, jumps have a fixed size. One could instead make jump
size random, drawn independently from other variables as well as independently
from one jump to another. The range of available Levy processes and their
corresponding martingales is thus very large. The potential of Levy processes to
model empirical features of financial data has triggered a lot of research over
the past decade.

Finally, as an illustration of the power and elegance of the martingale per-
spective in stochastic analysis, I close this introduction with two important
characterization results :

o A process (B;)ier, with By = 0 and continuous trajectories is a Brownian
motion if and only if B? — ¢ is a martingale (Levy’s characterization of the
Brownian motion).

e A point process (P;);cr, is a Poisson process of intensity A if and only
if P, — At is a martingale (Watanabe’s characterization of the Poisson
process).
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